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Abstract
To calculate the effective dielectric response of a dilute composite, a
generalization of the Maxwell Garnett theory for small nonspherical particles
distributed in shape is proposed. Various types of distribution function are
analysed and the applicability of the simplest (steplike) distribution is discussed.
It is shown that the use of the steplike distribution is more valid for particles
having a higher imaginary part of the permittivity in the actual region. Besides,
an alternative approach to the problem based on the spectral representation is
also considered. As an illustration, the effective dielectric response of a system
of semiconductor (SiC) and metal (Al) ellipsoidal particles is calculated.

1. Introduction

The dielectric response is one of the most important quantities describing the electrical and op-
tical properties of materials. It is of particular interest when studying composite systems. They
are the mainstay of advanced engineering structures and their importance continues to grow.

It is well known that most theories on the dielectric response of composite systems use
spherical models. Up to now such theories as the Maxwell Garnett (MG) and Bruggeman
ones, in spite of their limitations, have been widely used in practical calculations (see, e.g.,
[1–18]). Their application, however, is under scrutiny rather frequently. Below the MG theory
will be considered that is usually applied to dilute suspensions of uniform spheres.

Since the first appearance of the MG theory [19], various corrections to its initial form
have been proposed. It is known that this theory completely neglects fluctuations of the local
field. Many works take these fluctuations into account [20]. It should be noted that if these
fluctuations are strong, then mean-field theories collapse and other approaches to description
of the optical properties of composites are to be applied (see, e.g., [21] and [22]). A theory of
linear and nonlinear dielectric responses of the Maxwell Garnett composites based on a spectral
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representation is developed in [23]. Mention may be also made of MG theory generalizations
for small particles with consideration of their multipole interaction [24–27] and for an ensemble
of semiconducting nanoparticles [28], as well as for chiral composites [29–31].

As was mentioned above, both MG and Bruggeman models employ the spherical shape
concept. At the same time in actual systems the particles (inclusions) are usually not spheres.
It is clear that for the most part the ellipsoidal shape depicts the actual inclusion shape more
adequately than the spherical one. Besides, in the actual particle systems the inclusions are
usually shape distributed. However, as far as we know, in the literature only the generalizations
of the MG equation for ellipsoids of a fixed shape are considered [32–35]. (There are also
generalizations of the Bruggeman equation for ellipsoids, see, e.g., [2, 15] and [36–38]. This
problem, however, is beyond the scope of our present work.) Galeener [32] has proposed a
generalization of the MG equation considering a spherical cavity surrounding the ellipsoid.
However, Cohen et al [33] have pointed out that Galeener’s equation does not reproduce correct
results in extreme cases when prolate spheroids approach long cylinders (needles) and oblate
spheroids become wide dishes (discs). To account for these extreme geometries, the authors
have proposed using an ellipsoidal cavity of the same shape as the inclusions instead of the
spherical cavity. Later Fu and Resca [35] considered the above problem in more detail and
showed that both results, of Galeener and Cohen et al, correspond merely to different choices
of pair distributions. These results, however, concern the system of aligned ellipsoids with one
of their axes parallel to the applied field. Some problems arising when the ellipsoids are not
aligned are considered by Landauer [34]. Another important development in this field belongs
to Hayashi et al [4], who have considered the case of randomly oriented ellipsoids.

What if the ellipsoids are shape distributed? Earlier we found the effective absorption
cross section [39], as well as the effective scattering cross section [40, 41], for a system of
small non-interacting ellipsoids and spheroids distributed in shape. An approach by Bohren
and Huffman [42] enables one to calculate the effective dielectric response. However, as far
as we know, many important problems have not been considered earlier. In particular, one
can enumerate some problems that are of theoretical, as well as practical, interest, namely the
following.

(1) What are the ways to extend the MG theory for shape-distributed particle systems?
(2) When one can use the simplest (steplike) approximation for the distribution function of

ellipsoidal shapes?
(3) What are the properties that the distribution function in natural particle composites has to

possess?
(4) Can the distribution function parameters be determined from experimental data?

Here we consider such complex composites in more detail and try to answer these
questions. In particular, we consider the case of the uniform (steplike) distribution function,
as well as the case of the generalized distribution functions. Particular emphasis has been
placed on the case of small nonsphericity that is of practical interest. At the same time, our
consideration uses quasi-static (long-wavelength) approximation, i.e. finite-size effects are
neglected.

The structure of our paper is as follows. In section 2, the formalism used for description
of shape-distributed particle systems is developed. First we give the well known results
for systems of ellipsoids of a fixed shape. Then we present results obtained for ellipsoids
distributed in shape with the simplest (steplike) distribution. The generalizations of the MG
theory for nonspherical particles that are based on the spectral (Bergman) representation are to
be further considered. Consideration of generalized distribution functions for ellipsoidal shapes
completes section 2. In section 3, we present the results of numerical calculations performed for
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the effective dielectric response of a dilute system of silicon carbide and aluminum ellipsoids
having complex permittivities and distributed in shape with different distributions. In section 4,
the main results of our work are discussed. Some concluding remarks are presented in section 5.

2. System of ellipsoids

2.1. System of ellipsoids of a fixed shape

The effective dielectric response 〈ε〉 of a composite system may be defined as

〈ε〉 =
∫
V
D dV∫

V
E dV

= fm〈Dm〉 + fi〈Di〉
fm〈Em〉 + fi〈Ei〉 . (1)

Here the subscript m refers to the matrix, the subscript i refers to the inclusions, fi(fm) is
the filling factor of the inclusions (matrix), fi + fm = 1 and 〈D〉 and 〈E〉 are the spatial
averages of the displacement and electric field, respectively. It should be noted that such an
approach implies that here only one-particle correlations are taken into account. We deal with
a system of ellipsoidal particles (inclusions) whose (scalar) permittivity is εi . The inclusions
are embedded in a matrix whose permittivity is εm. Then the expression (1) may be rewritten
as

〈ε〉 = fmεm〈Em〉 + fiεi〈Ei〉
fm〈Em〉 + fi〈Ei〉 . (2)

Let us now consider a single ellipsoid made of a material with the permittivity εe embedded
in a medium with the permittivity εs and subjected to an applied field E0. Then the internal
ellipsoid field Ee and the applied field may be related by the linear equation [42, 43]

�Ee = ↔
λ �E0 (3)

where the diagonal components λj of the tensor
↔
λ are

λj = εs

εs + Lj(εe − εs)
(4)

and Lj is the j th depolarization factor of the ellipsoid. Note that a normalization condition,∑
j Lj = 1, holds for any ellipsoid. Besides, if the ellipsoids are randomly distributed, one

can take

〈Ee〉 = 〈λ〉E0 (5)

where 〈λ〉 is

〈λ〉 = 1

3

3∑
j=1

λj . (6)

It should be noted that we assume that the applied electric fieldE0 = 〈E〉, i.e., it is constant and
homogeneous and may result from averaging the microscopic field over a volume containing
many inclusions. Besides, we suppose that the matrix (the space between inclusion particles)
can be filled by (matrix) ellipsoids. To find the function 〈ε〉, we have to specify the relationships
between 〈Em〉, 〈Ei〉 and 〈E〉. The relationships εi = εe and 〈Ei〉 = 〈Ee〉 are obvious. It seems
to be reasonable also to suggest that for diluted particle systems εm = εs (Bruggeman’s concept
suggests εm = 〈ε〉). If so, then 〈Em〉 does not depend on Lj . Such a choice yields the trivial
relation 〈Em〉 = 〈E〉. This results in the equation for 〈ε〉

〈ε〉 = fmεm + fiεi〈λ〉
1 − fi + 〈λ〉 . (7)

Setting Li = 〈L〉 = 1/3 in equation (7), one obtains the classical MG equation for spherical
inclusions.
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2.2. Uniform distribution function

Let us now assume that the ellipsoids are distributed in shape. Besides, we operate on the
premise that all orientations are equiprobable and there is no correlation between the volume of
ellipsoids and their shape and orientation, as well as between the shape and orientation. In this
case one can use the following generalized equation for the effective dielectric response [42]:

〈ε〉 = εm
fm + fiεiβ

fm + fiεmβ
(8)

where

β = 1

3

∫ ∫
P(L1, L2)

∑
j

[εm + Lj(εi − εm)]
−1dL1 dL2 (9)

and P(L1, L2) is the distribution function for the depolarization factors of ellipsoids. It is
apparent that this function is to be normalized to unity:∫ ∫

P(L1, L2) dL1 dL2 = 1. (10)

We note that equation (9) can be rewritten as β = 〈α〉/(εi − εm) where

〈α〉 = 1

3

∫ ∫
P(L1, L2)

[ 2∑
j=1

(γ + Lj)
−1 + (γ + 1 − L1 − L2)

−1

]
dL1 dL2 (11)

is the effective polarizability of an ensemble of non-interacting ellipsoids [39] and
γ = εm/(εi − εm). Then equation (8) takes the form

〈ε〉 = εm

(
1 − fi〈α〉

1 − fi + fiγ 〈α〉
)
. (12)

Thus, to find the effective dielectric response 〈ε〉, one suffices to calculate the effective
polarizability 〈α〉. It should be noted that if fi � 1, then

〈ε〉 ∼= εm(1 − fi〈α〉). (13)

Hence the behaviour of 〈ε〉 is qualitatively similar to that of the effective polarizability. A
general scheme allowing calculating 〈ε〉 is given in the appendix.

Let us suppose that the shape of particles slightly differs from spherical. Then one can
assume that the shape variance (nonsphericity) of the particles � is rather small. The simplest
form of the distribution function in this case is the uniform (steplike) one [39, 41]

PS(L1, L2) = 2

�2
χ(L1 − �/3)χ(L2 − �/3)χ(1 − L1 − L2 − �/3) (14)

where χ is the Heaviside unit function. For this case the effective polarizability was obtained
earlier [39]:

〈α〉S = 2

�2

[
(γ + 1/3 + 2�/3) ln

γ + 1/3 + 2�/3

γ + 1/3 − �/3
− �

]
. (15)

Taking into account that � � 1, one may expand equation (15) into a Taylor series. This
yields

〈α〉S ∼= 〈α〉0

(
1 +

1

18
〈α〉2

0�
2

)
. (16)

By substituting equation (15) into equation (12) one obtains a generalized MG equation for
〈ε〉S . On the other hand, substitution of equation (16) into equation (12) gives an approximate
equation

〈ε〉S ∼= 〈ε〉0 +
1

18

[
γ (1 − 〈ε〉0)

(
1 − 〈ε〉0

εm

)
+ 〈ε〉0 − εm

]
〈α〉0�

2 (17)

where 〈ε〉0 satisfies the classical MG equation (at � = 0).
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It is of interest to find a condition when Im 〈ε〉 peaks. It is well known that for the classical
MG equation this condition is Re 〈α〉0 = 3/fi . If � 	= 0, then one can suppose that such a
condition is of the form

Re 〈α〉0
∼= 3

fi
(1 + δ) (18)

where δ � 1. Substituting equation (15) into equation (8) and setting the denominator equal
to zero, one can estimate the value of δ:

δ ∼= fm

fi

3�2

6�2 − 9�2/fi − 6fi
. (19)

It is easy to verify that δ < 0 for any f and �. Equation (18) can be rewritten in the form

Re εi
∼= εm

1 + 2(1/fi + δ/3)

1 − (1/fi + δ/3)
. (20)

One can see that the distribution in shape shifts the peak of Im 〈ε〉 to lower frequencies. This
is an evident consequence of equation (20) when δ < 0. A similar phenomenon takes place
also for the effective absorption cross section [39].

Questions arise concerning the effect of the distribution function form on the effective
dielectric response. Earlier Hansen and Travis showed [44] that scattering properties of size-
distributed spherical particles depend primarily on the effective variance of the distribution,
while its actual form has a minor influence. Later Mishchenko and Travis [45] generalized
this result to randomly oriented nonspherical particles.

2.3. Generalizations based on the spectral representation

Generally speaking, there is some arbitrariness when choosing the distribution function
P(L1, L2). Indeed, the spectral representation [46–48] enables one to write for 〈ε〉 of any
composite

〈ε〉 = εm

[
1 + fi

∫ 1

0
G(x)(γ + x)−1dx

]
(21)

where G(x) is the spectral density function that specifies the composite topology. Comparing
equations (13), (11) and (21), one obtains the following equation linking the functionP(L1, L2)

with G(x):

1

3

∫ 1

0

∫ 1−L1

0
P(L1, L2)

3∑
j=1

(γ + Lj)
−1dL1 dL2 =

∫ 1

0

G(x)

γ + x
dx. (22)

This means that the representation (13) is as general as the representation (21). In particular,
it is suitable not only for the composites with matrix topology where inclusions (particles) are
embedded in a continuous matrix (host), but for any composites as well.

The spectral density function G(x) corresponding to the classical MG equation is [47]

G(x) = δ(x − fm/3) (23)

where δ is the Dirac delta-function. One can try to extend the MG theory by generalizing the
above equation. For example, one can use the approach proposed earlier [49] for superlattices.
Similar to this, in the case of slightly nonspherical particles the spectral density function can
be specified in the form of the step

G(x) =
{
�−1 if fm(1 − �)/3 � x � fm(1 − �)/3 + �

0 if not.
(24)
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Here the nonsphericity parameter 0 � � � 1 and the left limit of the step fm(1 −�)/3 → 0,
while the right limit fm(1 − �)/3 + � → 1 as � → 1. Substituting equation (24) into
equation (21), one gets

〈ε〉 = εm

[
1 +

fi

�
ln

γ + fi(1 − �)/3 + �

γ + fi(1 − �)/3

]

= εm

{
1 +

fi

�
ln

[
1 + �

εi − εm

εm + fi(εi − εm)(1 − �)/3

]}
. (25)

If � � 1, then

〈ε〉 ∼= εm

[
1 +

fi

γ + fm/3
− �fi

1 + 2fi
6(γ + fm/3)2

]
= 〈ε〉0 − 1

6
�fiεm

1 + 2fi
(γ + fm)2

. (26)

What is the generalization specified by equation (25)? Close inspection of equation (21)
shows that the second factor in the integrand is (with some constant factor) nothing but the
dipole polarizability of a spheroid whose depolarization factor is x. In other words, the
representation (21) means that a diagonal component of the effective dielectric response of any
two-phase composite is the same as for a system of equally oriented non-interacting spheroids
(evidently, the electric field orientation along the spheroid rotation axis corresponds to the
above component). Thus we have derived the generalization of the classical MG equation for
spheroids distributed in shape and aligned along an axis. In a sense, equation (25) gives only
a diagonal component of the effective dielectric tensor of such an ensemble. If spheroids are
randomly oriented, then the integrand in equation (21) has to contain the spheroid polarizability
averaged over three main axes. This yields

〈ε〉 = εm

{
1 +

fi

�

[
ln

(
1 +

�

γ + fm(1 − �)/3

)
− 4 ln

(
1 +

�

fm(1 − �)/3 − 2γ − 1

)]}
.

(27)

If � � 1, then

〈ε〉 ∼= εm

{
1 +

fi

γ + fm/3
+ 4

fi

2γ + 1 − fm/3
− 1

6
�fi

[
1

(γ + fm/3)2
− 4

(2γ + 1 − fm/3)2

]}

= 〈ε〉0 − 1

6
�fiεm

[
1

(γ + 1/3)2
− 4

(2γ + 1 − fm/3)2

]
. (28)

How to specify the spectral density function for a system of shape-distributed ellipsoids? To
answer this question, one can combine equations (12) and (21) and then solve the equation
for G(x) (see, e.g., [47]). If, for example, one uses for the effective polarizability the
approximation (16), then such an approach gives for the function G(x)

G(x) = 1
3 [δ(x − x0) + δ(x − x1) + δ(x − x2)] (29)

where x0,1,2 are the solutions of the equation 1 + �2(1/3 − x)−2/18 = (1/3x − 1)fm/fi . It
is easy to see that if � → 0 then x0 = x1 = x2

∼= fm/3. It should be noted that this result
(equation (29)) is in agreement with that obtained earlier [50] for the two-parameter spectral
density function.

Above we have noted that the spectral density function G(x) specifies the distribution
of the depolarization factors of an ensemble of spheroids with the same effective dielectric
response as that of the real particle composite. It is not fully clear how to construct the
corresponding spectral density. At the same time, the distribution function P(L1, L2) can be
considered as the distribution in shape of real particles forming the composite. Because of this
one might expect to construct a generalized distribution function for real particle composites
from some general considerations.
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2.4. Generalized distribution function

Here we restrict our analysis to the case of composites with matrix topology, namely, the
composites consisting of small ellipsoids distributed in shape. Unfortunately, even in this
case it seems to be highly conjectural to construct a microscopic theory for the distribution
function P(L1, L2). As is known [45], the data on the distribution of particle shapes in natural
ensembles are very limited. However, it is reasonable to suggest that the function P(L1, L2)

has to possess some properties for most systems that are realized in practice. On such a
basis phenomenological models for this function can be constructed. So we assume that the
distribution function P(L1, L2) has to have the following properties that appear reasonable
for many natural particle ensembles: (i) P(L1, L2) = P(L2, L1); (ii) if L1(L2) → 0 or
L1(L2) → 1, then P(L1, L2) → 0, i.e., both strongly prolate (needle-like) and strongly
oblate (disclike) particles are highly improbable; (iii) P(L1, L2) peaks at L1 = L2 = 1/3, i.e.,
the spherical shape of the particles is most probable; (iv) the function P(L1, L2) is centred at
L1 = L2 = 1/3, namely, for any parameter 0 < σ < 1/3∫ 1/3

1/3−σ

dL1

∫ L1

1/3−σ

P (L1, L2) dL2 =
∫ 1/3+2σ

1/3
dL1

∫ (1−L1)/2

1/3−σ

P (L1, L2) dL2 (30)

(here integration is performed over right triangles). Equation (30) expresses a specific
symmetry of the system under consideration; it means that deviations of particle shape from
spherical to flat and extended ellipsoidal are equiprobable [39, 42].

Let us now consider a two-parameter distribution function of a rather general form:

P(L1, L2) = P1(L1, L2) = C1

{
π

2
+ arctg

[
a1

−L1 + 1/3 − �1/3

L1(L1 − 1)

]}

×
{
π

2
+ arctg

[
a1

−L2 + 1/3 − �1/3

L2(L2 − 1)

]}

×
{
π

2
+ arctg

[
a1

−L1 − L2 + 2/3 + �1/3

(1 − L1 − L2)(L1 + L2)

]}
(31)

where the constant C1 can be determined from the normalization condition (10). Here the
passages to limits take place, namely, if a1 → ∞, then P(L1, L2) → PS(L1, L2) and if
a1 → 0, then P(L1, L2) → PS(� = 1) = 2. This two-parameter function appears as a
natural generalization of the one-parameter distribution function (14) and we will use it in
what follows.

One can consider also another distribution function:

P(L1, L2) = P2(L1, L2) = C2

{
1 + exp

[
− a2

(
L1 +

�2

3
− 1

3

)]}−1

×
{

1 + exp

[
− a2

(
L2 +

�2

3
− 1

3

)]}−1

×
{

1 + exp

[
− a2

(
− L1 − L2 +

�2

3
+

2

3

)]}−1

. (32)

It is easy to check that the function P2(L1, L2) obeys conditions (i) and (iii) exactly, as well
as the above limits, if one substitutes a2 for a1. The conditions (ii) and (iv) are satisfied
approximately. We note also that the variances of the distributions (31) and (32) (cross-
sectional area on half of the height) are approximately �2

1/2 and �2
2/2, respectively; this

claim breaks down at small a1 (a2) values only. The general view of the distribution functions
P1(L1, L2) and P2(L1, L2) is shown in figure 1.
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(a)

(b)

Figure 1. The general view of the distribution functions (31) (a) and (32) (b) at the values of
parameters �1 = �2 = 0.3 and a1 = a2 = 50. The projections of the distribution functions on
the (L1, L2) plane are shown at the bottom.

Unfortunately, the use of the distributions (31) and (32) does not enable us to perform the
analytical integration in equation (11). So our further analysis will be numerical. Substituting
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equation (31) (or equation (32)) into the general equation for polarizability (11), one can
calculate an averaged polarizability and then (from equation (12)) the effective dielectric
response of the system of ellipsoids distributed in shape with the generalized distributions.

Figure 2. The effective dielectric response of a system of semiconductor ellipsoids. Curve 1
corresponds to the steplike distribution; curves 2 (a1 = 102) and 3 (a1 = 103) correspond to
equation (31) with �1 = 0.1.

3. Some numerical examples

To gain greater insight into how the shape distribution influences the effective dielectric
response, we consider particles of two types having essentially different bulk dielectric
properties: cubical SiC and Al. In [39] the behaviour of 〈α〉 as a function of parameter
� was considered. Earlier we noted that the behaviour of the function 〈ε〉(�) is qualitatively
similar to that of the function 〈α〉(�) (see equation (13)). Hence, here we focus our attention
on the effect of the parameter a1 (a2) (specifying the distribution function spreading) on 〈ε〉.

Cubic silicon carbide (β-SiC) is a wide-gap semiconductor that can be considered in the IR
as a typical insulator whose permittivity is well described by the one-oscillator Lorentz model.
The effective dielectric response function for silicon carbide particles calculated with the use
of distributions (31) and (32) at different values of parameter a1 (a2) is shown in figures 2
and 3, respectively. We should like to note the following peculiarities of this behaviour:

(i) the frequency position of the Im 〈ε〉(ν) peak practically does not depend on a1 (a2);
(ii) the value of Im 〈ε〉(ν) at its peak depends on the parameters a1 and a2 only slightly

(however, at small a1 (a2) this dependence becomes more pronounced);



8226 A V Goncharenko et al

(iii) when a1 (a2) becomes small, then an asymmetry of the ∈ 〈ε〉(ν) curve occurs.

Light absorption here is caused by surface phonon modes which manifest themselves in the
relatively narrow band (reststrahlen range) lying in the IR.

Figure 3. The effective dielectric response of a system of semiconductor ellipsoids. Curve 1
corresponds to the steplike distribution; curves 2 (a2 = 102) and 3 (a2 = 5 × 103) correspond to
equation (32) with �2 = 0.1.

Similar peculiarities take place also for metal particles. For example, in figures 4 and 5
the effective dielectric response function for shape-distributed aluminum particles is presented.
One can note, however, that for metal particles, in contrast to dielectric ones, there is a wide
band of heavy absorption caused by surface plasmons which can excite below the plasma
frequency. The reason is that in metals there is a wide frequency band where their permittivity
is negative (this condition is necessary to satisfy equation (18)); the band can cover a part of
the UV, visible and IR.

It is of interest to analyse the dependence F = Im 〈ε〉(νmax)/Im 〈ε〉S(νmax) on a1 (a2)
where νmax is the frequency position of the Im 〈ε〉 peak. Examples of such dependences
calculated for silicon carbide and aluminum particles are given in figure 6. We see that
with the use of the distribution (32) the dependences rapidly approach unity; with the use
of the distribution (31) they approach unity more slowly. Obviously, the reason is that the
distribution (32) converges to PS(L1, L2) with a2 faster than the distribution (31) converges to
PS(L1, L2) with a1.

4. Discussion

In the actual particle systems absorption spectra differ significantly from theoretical ones
calculated for balls [42, 51]. There are two main reasons for this. The first of these is the particle
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Figure 4. The effective dielectric response of a system of metal ellipsoids. Curve 1 corresponds
to the steplike distribution; curves 2 (a1 = 103), 3 (a1 = 102) and 4 (a1 = 50) correspond to
equation (31) with �1 = 0.1.

aggregation. The second one is the nonsphericity and shape distribution. Both phenomena
lead to a lowering of the absorption at its peak and a broadening of the absorption band. In
this work the second phenomenon has been the subject of our studies. The problem lies in the
fact that the shape distribution function is usually unknown. How much is this problem of real
concern? When is the use of the steplike distribution justified?

To answer these questions, here we discuss in greater detail the effect of the shape
distribution form on the function 〈ε〉(ν). To do this, let us now turn our attention to figure 6.
We see that if a1 = 200, then F = 0.83 for SiC particles and F = 0.92 for Al particles.
At the same time, if a2 = 200, then F = 0.84 for SiC particles and F = 0.93 for Al
particles. If a1 = a2 = 1000, then the distributions (31) and (32) are markedly nearer to
the distribution (14) than in the above example. In this case F = 0.96 for SiC particles and
F = 0.975 for Al particles (with the use of the distribution (31)) and F = 0.99 (with the use
of the distribution (32)). Thus, at a1 = a2 = 1000 both distributions, (31) and (32), give a
result close to that obtained with the use of the steplike distribution (14) (the deviation is less
than 5%).

Why does the F(a1(2)) dependence for Al particles converge to unity faster than that for
SiC particles? The reason seems to be that the Im εi value for SiC is less than that for Al in
the actual frequency region. Indeed, for both cases Re εi(νmax)

∼= −2 (this is evident from
equation (20) when fi � 1). At the same time our estimation for Im εi(νmax) gives 0.11 for SiC
and 2.06 for Al. To check our assumption, we have calculated the F(a1) dependence for SiC
particles using the lower (curve 5) and higher (curve 6) TO-phonon damping constant. Clearly
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Figure 5. The effective dielectric response of a system of metal ellipsoids. Curve 1 corresponds
to the steplike distribution; curves 2 (a1 = 103), 3 (a1 = 102) and 4 (a1 = 50) correspond to
equation (32) with �1 = 0.1.

such a change of TO-phonon damping constant leads to a respective decrease or increase of
the imaginary part of the particle permittivity. We see that the function F(a1) rises with Im εi .
One can show that the same takes place for the function F(a2) too.

One can assume that a general statement holds, namely

∂F

∂Im εi
> 0 (33)

where F = Im
∫∫

P(L1, L2)%max(L1, L2) dL1 dL2/Im
∫∫

PS(L1, L2)%max(L1, L2) dL1

dL2, %max = ∑3
i=1[γ (νmax) + Li]−1 and P(L1, L2) is a one-mode distribution function

obeying the above conditions (i)–(iv). Rigorous proof of this statement is not trivial and we
hope to give it elsewhere.

Let us now consider the accuracy of the steplike distribution in some frequency range, i.e.,
the function

δ∗ = 1

ν2 − ν1

∫ ν2

ν1

∣∣∣∣ 〈ε〉(ν) − 〈ε〉S(ν)
〈ε〉S(ν)

∣∣∣∣dν. (34)

For this purpose we first calculate the function 〈ε〉(ν) using the distributions (31) and (32) with
fixed values of �1 = �2 = 0.1. Then we fit the obtained functions 〈ε〉1(ν) and 〈ε〉2(ν) by the
function 〈ε〉S(ν) varying the parameter �. We name the value of � obtained as a result of such
fitting procedure ‘optimal’ and denote it �opt . Our calculations for the functions δ∗(a1(2))

and �opt (a1(2)) for SiC particles in the frequency range 750–1000 cm−1 (that includes the
reststrahlen range) are presented in figures 7 and 8, respectively.
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Figure 6. Dependence of the function F = Im 〈ε〉(νmax)/Im 〈ε〉S(νmax) calculated according
to equations (31) and (32) on parameters a1 and a2, respectively. The effective dielectric
response is calculated with distribution as equation (32) for semiconductor inclusions (curve 1);
with distribution as equation (31) for semiconductor inclusions (curve 2); with distribution as
equation (32) for metal inclusions (curve 3); with distribution as equation (31) for metal inclusions
(curve 4). Curve 5—the same as curve 2 but with imaginary part of inclusion permittivity ten times
as much; curve 6—the same as curve 2 but with imaginary part of inclusion permittivity one-tenth
as much.

We see that the steplike distribution (14) may not always be successfully used to describe
the function 〈ε〉 for actual particle systems. In our example an average error can reach 10%. At
the same time, when a1(2) is sufficiently large (over 102), then the average error is less than 2%.
Besides, we see that an increase of Im εi improves the applicability of the steplike distributions.

In practice the use of the distributions (31) and (32) seems to be more valid. Can
one determine parameters of these distributions from experimental data, for example, from
transmission spectra? To put it differently, can the inverse spectroscopic problem be solved?
If the particle system possesses the needed properties allowing one to use the generalized
MG equation (12), then our answer is ‘yes’. Such a conclusion follows from the fact that the
parameters a1(2) and �1(2) affect differently the form of the Im 〈ε〉(ν) dependence. Indeed, the
nonsphericity parameter �1(2) essentially influences both the peak frequency position and the
Im 〈ε〉(νmax) value [39]. At the same time the spreading parameter a1(2) affects practically the
Im 〈ε〉(νmax) value only. We predict also that the accuracy of determination of the parameters
a1(2) cannot be high when the shape-distribution function is close to the steplike one, i.e., when
a1(2) is large.

One can also consider a more general inverse problem, namely, extracting the function
P(L1, L2) from experimental measurements. It needs to be noted that similar problems fall
in the category of ill posed (or incorrect) ones: their solutions are unstable to weak changes
of input data. Such problems and methods of their solution are considered, in particular, in
[52, 53]. A closely related example is presented in [54], where a method for extracting the
spectral density function from experimental data is developed.
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Figure 7. Function δ∗ for SiC particles in the frequency range 750–1000 cm−1 calculated according
to equation (34) with the use of equation (31) (triangles), equation (32) (squares) and with the use
of equation (31) and an enlarged imaginary part of particle permittivity (circles).

Figure 8. Function �opt for SiC particles in the frequency range 750–1000 cm−1 calculated
according to equation (34) with the use of equation (31) (triangles), equation (32) (squares) and
with the use of equation (31) and an enlarged imaginary part of particle permittivity (circles).
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5. Conclusion

We have considered the generalized Maxwell Garnett equations for small ellipsoids and
spheroids taking into account their shape distribution. The generalizations are based on the
spectral representation, as well as on the distribution function for depolarization factors of
ellipsoids. Three possible distribution functions are examined. The simplest distribution
function is the steplike one. It is a one-parameter function, and the only parameter describes
the measure of nonsphericity. Two other distributions are two-parameter ones. The second
parameter describes the spreading of the distribution function. Considering an example of
SiC particles in the reststrahlen range, we conclude that the steplike distribution is not always
applicable in practice. However, its applicability is improved when the imaginary part of the
particle permittivity rises.

In conclusion, it should be noted that one of conditions that restricts essentially the use
of our approach in practice is the necessity to take into account the particle aggregation. This
problem is rather complex and calls for a special consideration. Some approaches to its solution
are outlined, in particular, in [55–57]. One can assume that the discrimination between the
effects caused by the particle shapes and those due to a strong interaction between particles
could be extremely difficult. However, we think that even in this case the problem of the effect
of the shapes of both particles forming the aggregate (cluster) and the particle clusters on the
effective polarizability (dielectric response) also deserves attention.

Appendix

Let us assume that P(L1, L2) is a narrow bell-shaped distribution function peaking at L1,
L2 = 1/3 and that when its variance � → 0, the function P(L1, L2) becomes infinite. This
means that in this case the distribution function is defined on the P -null sets. Such function
can be expanded in a series as an orthonormal set of δ-function and its derivatives [58]

P(L1, L2) =
∞∑

n,m=0

Cnmδ
(n)(L1 − 1/3)δ(m)(L2 − 1/3). (A1)

It must be emphasized that, of course, equation (A1) should not be taken too literally. It is
valid for integral relations only. From the normalization condition (10) it follows that

∞∑
n,m=0

Cnm

∫ 1

0
dL1δ

(n)(L1 − 1/3)
∫ 1

0
dL2δ

(m)(L2 − 1/3) = 1. (A2)

The last equation enables us to find the coefficient C00. Indeed, using the fact that the relations
hold for the δ-function [59]

∫ b

a

dξf (ξ)δ(n)(ξ−x) =




0, x /∈ [a, b]
1
2 (−1)nf (n)(x + 0), x = a
1
2 (−1)nf (n)(x − 0), x = b
1
2 (−1)n[f (n)(x + 0) + f (n)(x − 0)], x ∈ [a, b]

(A3)

and taking here f (ξ) = 1, one obtains C00 = 1. Thus, the distribution function can be
represented as

P(L1, L2) = δ(L1 − 1/3)δ(L2 − 1/3) +
∞∑

n,m=1

Cnmδ
(n)(L1 − 1/3)δ(m)(L2 − 1/3). (A4)
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Substituting this expression into equation (11), one gets

〈α〉 = 〈α〉0 +
1

3

∫ 1

0
dL1

∫ −L1+1

0
dL2

∞∑
n,m=1

Cnmδ
(n)(L1 − 1/3)δ(m)(L2 − 1/3)%(L1, L2)

(A5)

with

〈α〉0 = (γ + 1/3)−1 (A6)

that specifies the polarizability of spherical inclusions and

%(L1, L2) =
2∑

j=1

(γ + Lj)
−1 + (γ + 1 − L1 − L2)

−1. (A7)

The infinite sum

P̃ (L1, L2) =
∞∑

n,m=1

Cnmδ
(n)(L1 − 1/3)δ(m)(L2 − 1/3) (A8)

after its integration with %(L1, L2) yields

I = 1

3

∫ 1

0
dL1

∫ −L1+1

0
dL2P̃ (L1, L2)%(L1, L2)

∼=
∞∑

m,n=1

(−1)m+nCmn

∂m+n

∂mL1∂nL2
%(L1, L2)|L1,L2=1/3. (A9)

Clearly, the coefficients Cmn have to depend on � and consequently may be represented as a
power series in �:

Cmn(�) = K(0)
mn + K(1)

mn� + K(2)
mn�

2 + . . . . (A10)

It is easy to check that K(0)
mn = 0. Indeed, the passage has to take place

lim
�→0

P(L1, L2) = δ(L1 − 1/3)δ(L2 − 1/3) (A11)

or

lim
�→0

∞∑
m,n=1

{K(0)
mnδ

(m)(L1 − 1/3)δ(n)(L2 − 1/3) + �K(1)
mnδ

(m)(L1 − 1/3)δ(n)(L2 − 1/3)

+�2K(2)
mnδ

(m)(L1 − 1/3)δ(n)(L2 − 1/3) + . . .} = 0. (A12)

It follows immediately that K(0)
mn has to equal zero. Hence we can write down

I = I1� + I2�
2 + . . . (A13)

where

Il = 1

3

∞∑
m,n=1

(−1)m+nK(l)
mn

∂m+n

∂mL1∂nL2
%(L1, L2)

∣∣∣∣
L1,L2=1/3

. (A14)

Thus, one has for the effective polarizability

〈α〉 = 〈α〉0 + I1� + I2�
2 + . . . . (A15)

As it follows from equations (A1), (A10) and (A14), if

lim
�→0

(
∂P (L1, L2)

∂�

)
= 0 (A16)

then I1 = 0.
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